

Scheda Tecnica:

AVVERTENZE IMPORTANTI

Assicurarsi che il motore sia **spento e freddo** prima di intervenire. Scollegare la batteria quando previsto dalle procedure del costruttore. Eseguire diagnosi e apprendimento/adattamento quando richiesto dalla casa auto.

Sotto-tipi

- Flessibile acqua motore
- Flessibile acqua riscaldamento abitacolo
- Flessibile acqua radiatore

Descrizione generale

Il flessibile acqua è un componente flessibile utilizzato per il trasporto del liquido refrigerante tra motore, radiatore e impianto di riscaldamento. Deve garantire tenuta, resistenza alle alte temperature e alla pressione del circuito di raffreddamento.

Anomalie più comuni

Sintomi lato veicolo / utente

- Perdita di liquido refrigerante visibile sotto il veicolo
- Surriscaldamento motore
- Odore di liquido refrigerante nell'abitacolo
- Formazione di vapore o fumo dal vano motore

Evidenze lato diagnosi / strumento

- Calo del livello liquido refrigerante nel vaso di espansione
- Pressione anomala nel circuito di raffreddamento rilevata da sensori
- Codici di errore relativi a temperatura motore elevata
- Verifica visiva di crepe, rigonfiamenti o abrasioni sul flessibile

Cause principali del guasto

Elettriche

- Dipende da OEM, generalmente non applicabile al flessibile acqua.
- Eventuale malfunzionamento sensori temperatura collegati al circuito di raffreddamento.
- Corto circuito o interruzione nei cablaggi dei sensori temperatura motore.

Meccaniche

- Invecchiamento e deterioramento del materiale gomma
- Surriscaldamento eccessivo che provoca rigonfiamenti o crepe
- Contatto con superfici calde o parti mobili che causano abrasioni
- Pressione eccessiva nel circuito di raffreddamento
- Installazione errata o serraggio insufficiente delle fascette di tenuta

Ambientali

- Esposizione a agenti chimici aggressivi
- Vibrazioni e sollecitazioni meccaniche continue
- Escursioni termiche ripetute

Software / Adattamento

- Non applicabile al componente flessibile acqua. Dipende da OEM per eventuali adattamenti sensore temperatura correlati.
- Nessuna calibrazione software diretta sul flessibile.

Codici errori più comuni

CODICE	DESCRIZIONE	TIPO
P0128	Termostato non raggiunge la temperatura di esercizio entro il tempo previsto (possibile perdita o malfunzionamento circuito raffreddamento)	EOBD
P0217	Temperatura motore troppo elevata (surriscaldamento)	EOBD
P0480	Malfunzionamento ventola di raffreddamento (possibile causa indiretta da perdita liquido)	EOBD
P0115	Sensore temperatura liquido refrigerante malfunzionante	EOBD

Procedura di diagnosi

Attrezzi di prova

- Autodiagnosi
- Ispezione operativa e visiva

Passi operativi

- 1. Verificare visivamente la presenza di perdite o danni sul flessibile acqua.
- 2. Controllare il livello del liquido refrigerante nel vaso di espansione.
- 3. Eseguire la diagnosi elettronica per rilevare codici errore relativi a temperatura motore e circuito raffreddamento.
- 4. Ispezionare il flessibile per crepe, rigonfiamenti o abrasioni.
- 5. Verificare la pressione del circuito di raffreddamento con apposito strumento.
- 6. Controllare il serraggio delle fascette di tenuta e la corretta installazione del flessibile.

Procedura di Installazione

- 1. Assicurarsi che il motore sia freddo prima di intervenire sul circuito di raffreddamento per evitare ustioni.
- 2. Svuotare il liquido refrigerante dal circuito di raffreddamento.
- 3. Rimuovere le fascette di tenuta e smontare il flessibile danneggiato.
- 4. Pulire le sedi di montaggio e verificare l'integrità dei raccordi.
- 5. Installare il nuovo flessibile assicurandosi che sia posizionato correttamente senza torsioni.
- 6. Fissare le fascette di tenuta con la coppia di serraggio raccomandata.
- 7. Ricaricare il circuito con liquido refrigerante conforme alle specifiche OEM.
- 8. Eseguire spurgo aria dal circuito secondo procedura OEM.
- 9. Verificare assenza di perdite con motore in temperatura.

Procedura di test su vettura

- Avviare il motore e portarlo a temperatura di esercizio.
- Controllare che non vi siano perdite visibili dal flessibile.
- Monitorare la temperatura motore tramite strumentazione di bordo o diagnostica.
- Verificare il corretto funzionamento della ventola di raffreddamento.
- Controllare il livello del liquido refrigerante dopo il test e rabboccare se necessario.
- Effettuare un test su strada per confermare l'assenza di surriscaldamento.

Note di sicurezza

- Non intervenire sul circuito di raffreddamento con motore caldo per evitare ustioni da liquido o vapore.
- Utilizzare sempre liquido refrigerante conforme alle specifiche OEM per evitare danni al sistema.
- Smaltire correttamente il liquido refrigerante esausto secondo normative ambientali.
- Verificare sempre la compatibilità del flessibile con il modello e motorizzazione del veicolo.
- Indossare dispositivi di protezione individuale durante le operazioni di manutenzione.
- Fonti web utilizzate
- Manuale di riparazione veicoli Circuito raffreddamento (Bosch Automotive, 2022) https://www.bosch-automotive.com/it/manuali-riparazione
- Diagnosi e manutenzione circuito raffreddamento (Autodata, 2023) https://www.autodata-group.com/it/

IMPORTANT WARNINGS

Ensure that the engine is **off and cold** before intervening. Disconnect the battery when required by manufacturer procedures. Perform diagnosis and learning/adaptation when required by the car manufacturer.

Sub-types

- Engine water hose
- Cabin heating water hose
- Radiator water hose

General Description

- The water hose is a flexible component used for transporting the coolant between the engine, radiator, and heating system. It must ensure sealing, resistance to high temperatures, and withstand the pressure of the cooling circuit.

Most Common Anomalies

Vehicle / User Side Symptoms

- Visible coolant leak under the vehicle
- Engine overheating
- Smell of coolant in the cabin
- Formation of steam or smoke from the engine compartment

Diagnostic / Tool Side Evidence

- Drop in coolant level in the expansion tank
- Abnormal pressure in the cooling circuit detected by sensors
- Error codes related to high engine temperature
- Visual inspection for cracks, bulges, or abrasions on the hose

Main Causes of Failure

Electrical

- Depends on OEM, generally not applicable to the water hose.
- Possible malfunction of temperature sensors connected to the cooling circuit.
- Short circuit or interruption in the wiring of the engine temperature sensors.

Mechanical

- Aging and deterioration of rubber material
- Excessive overheating causing bulges or cracks
- Contact with hot surfaces or moving parts causing abrasions
- Excessive pressure in the cooling circuit
- Incorrect installation or insufficient tightening of sealing clamps

Environmental

- Exposure to aggressive chemical agents
- Continuous vibrations and mechanical stresses
- Repeated thermal excursions

Software / Adaptation

- Not applicable to the water flexible component. Depends on OEM for any related temperature sensor adjustments.
- No direct software calibration on the flexible component.

Most Common Error Codes

CODE	DESCRIPTION	ТҮРЕ
P0128	Thermostat does not reach the operating temperature within the expected time (possible leak or malfunction in the cooling circuit)	EOBD
P0217	Engine temperature too high (overheating)	EOBD
P0480	Cooling fan malfunction (possible indirect cause from fluid leak)	EOBD
P0115	Malfunctioning coolant temperature sensor	EOBD

Diagnostic Procedure

Test Tools

- Self-diagnosis
- Operational and visual inspection

Operational Steps

- 1. Visually check for leaks or damage on the water hose.
- 2. Check the coolant level in the expansion tank.
- 3. Perform electronic diagnostics to detect error codes related to engine temperature and cooling circuit.
- 4. Inspect the hose for cracks, bulges, or abrasions.
- 5. Check the pressure of the cooling circuit with the appropriate tool.
- 6. Verify the tightness of the clamps and the correct installation of the hose.

Installation Procedure

- 1. Ensure that the engine is cold before working on the cooling system to avoid burns.
- 2. Drain the coolant from the cooling system.
- 3. Remove the sealing clamps and dismantle the damaged hose.
- 4. Clean the mounting surfaces and check the integrity of the fittings.
- 5. Install the new hose ensuring it is positioned correctly without twists.
- 6. Secure the sealing clamps with the recommended torque.
- 7. Refill the system with coolant that meets OEM specifications.
- 8. Perform air bleeding of the system according to OEM procedures.
- 9. Check for leaks with the engine at operating temperature.

Vehicle Test Procedure

- Start the engine and bring it to operating temperature.
- Check for any visible leaks from the hose.
- Monitor the engine temperature using onboard instrumentation or diagnostics.
- Verify the proper functioning of the cooling fan.
- Check the coolant level after the test and top up if necessary.
- Conduct a road test to confirm the absence of overheating.

Safety Notes

- Do not intervene on the cooling circuit with the engine hot to avoid burns from liquid or steam.
- Always use coolant that complies with OEM specifications to prevent damage to the system.
- Properly dispose of used coolant according to environmental regulations.
- Always check the compatibility of the hose with the vehicle model and engine type.
- Wear personal protective equipment during maintenance operations.
- Web sources used
- Vehicle Repair Manual Cooling Circuit (Bosch Automotive, 2022) https://www.bosch-automotive.com/en/repair-manuals
- Diagnosis and Maintenance of Cooling Circuit (Autodata, 2023) https://www.autodata-group.com/en/

